Unbiased Feature Selection in Learning Random Forests for High-Dimensional Data

نویسندگان

  • Thanh-Tung Nguyen
  • Joshua Zhexue Huang
  • Thuy Thi Nguyen
چکیده

Random forests (RFs) have been widely used as a powerful classification method. However, with the randomization in both bagging samples and feature selection, the trees in the forest tend to select uninformative features for node splitting. This makes RFs have poor accuracy when working with high-dimensional data. Besides that, RFs have bias in the feature selection process where multivalued features are favored. Aiming at debiasing feature selection in RFs, we propose a new RF algorithm, called xRF, to select good features in learning RFs for high-dimensional data. We first remove the uninformative features using p-value assessment, and the subset of unbiased features is then selected based on some statistical measures. This feature subset is then partitioned into two subsets. A feature weighting sampling technique is used to sample features from these two subsets for building trees. This approach enables one to generate more accurate trees, while allowing one to reduce dimensionality and the amount of data needed for learning RFs. An extensive set of experiments has been conducted on 47 high-dimensional real-world datasets including image datasets. The experimental results have shown that RFs with the proposed approach outperformed the existing random forests in increasing the accuracy and the AUC measures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid Feature Selection Based on Random Forests for High-Dimensional Data

One of the important issues of machine learning is obtaining essential information from high-dimensional data for discrimination. Dimensionality reduction is a means to reduce the burden of dimensionality due to large-scale data. Feature selection determines significant variables and contributes to dimensionality reduction. In recent years, the random forests method has been the focus of resear...

متن کامل

Feature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach

Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...

متن کامل

Random Forests with Missing Values in the Covariates

In Random Forests [2] several trees are constructed from bootstrapor subsamples of the original data. Random Forests have become very popular, e.g., in the fields of genetics and bioinformatics, because they can deal with high-dimensional problems including complex interaction effects. Conditional Inference Forests [8] provide an implementation of Random Forests with unbiased variable selection...

متن کامل

Random Forests for multiclass classification: Random MultiNomial Logit

Several supervised learning algorithms are suited to classify instances into a multiclass value space. MultiNomial Logit (MNL) is recognized as a robust classifier and is commonly applied within the CRM (Customer Relationship Management) domain. Unfortunately, to date, it is unable to handle huge feature spaces typical of CRM applications. Hence, the analyst is forced to immerse himself into fe...

متن کامل

Random Forests-based Feature Selection for Land-use Classification Using Lidar Data and Orthoimagery

The development of lidar system, especially incorporated with high-resolution camera components, has shown great potential for urban classification. However, how to automatically select the best features for land-use classification is challenging. Random Forests, a newly developed machine learning algorithm, is receiving considerable attention in the field of image classification and pattern re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015